Required Design, mechanis engineer and spat apply the mechanic	· · · · ·	Prof. Mar ems that enabl body modeling ms. Emphasis ad capacity, eff via computat roblem sets ar	e performance which is impr , topology synthesis, freedom a is placed upon the use of first p iciency and integration with a ional models and test prototy	and constraint topology) to rinciples to optimize planar ctuation/sensing. Students 'pe(s) for prototype-based							
Design, mechanis engineer and spat apply the mechanic systems,	modeling and integration of compliance into syste sms. Students learn multiple strategies (pseudo-rigid compliant mechanisms for modern mechanical syste tial kinematics, stiffness, energy storage/release, loa e preceding to synthesize concepts, optimize them cal problem sets and a term project. Mechanical p	that enabl body modeling ms. Emphasis ad capacity, eff via computat roblem sets ar	e performance which is impr , topology synthesis, freedom a is placed upon the use of first p iciency and integration with a ional models and test prototy	ractical to obtain via rigid and constraint topology) to rinciples to optimize planar ctuation/sensing. Students 'pe(s) for prototype-based							
mechanis engineer and spat apply the mechanic systems,	sms. Students learn multiple strategies (pseudo-rigid compliant mechanisms for modern mechanical syste tial kinematics, stiffness, energy storage/release, loa e preceding to synthesize concepts, optimize them cal problem sets and a term project. Mechanical p	body modeling ms. Emphasis ad capacity, eff via computat roblem sets ar	i, topology synthesis, freedom is placed upon the use of first p iciency and integration with a ional models and test prototy	and constraint topology) to rinciples to optimize planar ctuation/sensing. Students 'pe(s) for prototype-based							
mechanio systems,	cal problem sets and a term project. Mechanical p	roblem sets ar									
systems,	· · · · ·		nd projects are drawn from are								
	, prosthetics, energy harvesting, precision instrument			mechanical problem sets and a term project. Mechanical problem sets and projects are drawn from areas that include biological							
Date	systems, prosthetics, energy harvesting, precision instrumentation, robotics, space-based systems and others.										
	Lecture	Reading quiz	Mini project	Laboratories							
0109/06	Fundamental issues, concepts, principles; elements/systems			- No lab -							
0209/11	Boot camp: Practical application of 2.001, 2.002 and 2.003 Boot camp: Practical application of 2.005, 2.007 & 2.008		Engineering bootcamp worksheet	Engineering bootcamp I Units, magnitudes, basics							
04 09/18	Approach: Constraint-based design [Theory] Approach: Constraint-based design [Examples]	Blanding		Engineering bootcamp II Decision making							
06 09/25	Approach: Constraint-based design [Practice] Project work and coaching sessions			CBD Flexure building blocks							
0810/02 A	Approach: Freedom and constraint topology [Theory] Project work session (on your own) [Jury Duty]	Hopkins	CBD: Satellite or CBD examples	Lect: Approach: FACT [Examples]							
10 10/09	No class [Student holiday] Approach: Freedom and constraint topology [Practice]			- No Lab -							
	Approach: Pseudo-rigid body modeling [Theory]	Howell		FACT							
	No class [MC at ISAM]		FACT: Screw motions	Screw drive & AFM stage							
14 10/23	Approach: Pseudo-rigid body modeling [Examples] Project work and coaching sessions			PRBM Lect.: [Practice] 4 bar/airfoil							
	Approach: Topological synthesis methods (overview)	Kota (Ext Cr)		Optional:							
	Modeling: Stiffness matrices I	SM		Project coaching session							
1811/06 I	Modeling: Stiffness matrices II Modeling: FEA		PRBM: Robot gripper	MODELING Stiffness matrices							
2011/13	Analysis & optimization: Energy			Optional:							
	Project work and coaching sessions			Project coaching session							
23 11/22	Project work and coaching sessions Analysis & optimization: Kinematics & elastomechanics			MODELING Energy							
	Analysis & optimization: Dynamics			MODELING							
	Project work and coaching sessions		ENERGY: Bi-stable mechanism	Motion, stiffness, vibrations							
	Integration: Sensors and actuators			CASE STUDY							
2712/06 I	Integration: Fabrication, assembly & calibration			Microtome actuators/sensors							
	Project work and coaching sessions Final day of class, recap & share projects		BIOMIMETIC: Insect skeleton	- No lab -							

GRADING						
Mini projects / Assignments	Reading/in class quizzes	Labs	Practical assessment			
50	20	25	05			

Teaching philosophy

"The man who sets out to carry a cat by its tail learns something that will always be useful and which never will grow dim or doubtful." -- Mark Twain

Many students misunderstand the purpose of the modeling content they are exposed to. This leads to a misperception that equations embody all abilities required to practice engineering. Models are critical, but your decisions and actions must be based on:

(1) Understanding that engineering models are idealizations of real systems. The only thing that "perfectly" models a real system is a physical embodiment of that system. The process of "synthesizing-modeling-fabricating-testing" a prototype helps to provide this insight.

- (2) Mastering how to judiciously *combine* a, b and c... vs relying on them alone:
- (a) Concepts, principles and design processes are necessary, but not sufficient alone
- (b) Mathematics, physics and engineering modeling are necessary, but not sufficient alone
- (c) Practical skills and familiarity with best practices are necessary, but not sufficient alone

Project design notebooks

Each student must keep a design notebook. Notebooks will be collected without warning. Notebooks must adhere to best practices guidelines. No 3-ring binders or digital notebooks will be accepted and class notes may not be included.

Useful texts (not necessary to purchase for this class)

- 1. Topology optimization of compliant mechanisms; Xianmin Zhang, Benliang Zhu
- 2. Handbook of compliant mechanisms; Larry Howell, Spencer Magleby, Brian Olsen
- 3. Compliant mechanisms: Design of flexure hinges; Nicolae Lobontiu
- 4. Designing compliant mechanism suspensions; Thorsten Schrader
- 5. Flexures: Elements of elastic mechanisms; Stuart Smith
- 6. Exact constraint machine design using kinematic processing; Douglass Blanding
- 7. Principles/techniques for designing precision machines; Layton Hale
- 8. A treatise on the theory of screws; Robert Ball
- 9. The Art of Flexure mechanism design; Florent Cosandier, Simon Henein, Murielle Richard, Lennart Rubbert

Lab sessions

Labs may resemble recitations, sometimes design reviews, sometimes case studies, and sometimes hands-on labs. Much of lab will focus on applying theory in practice. You must attend all labs to pass the class, unless you're pre-approved or excused by Prof. Culpepper.

Use of the Maker Workshop

You may make components for your assignments and project in any shop you choose. The Maker Workshop is available for any MechE student, or student in a MechE class. HOWEVER, respect the student mentors and strive to make judicious use of the facility. Be respectful of their time, the materials they have in the shop, and the tools/machines. If you break something accidentally... it happens when you are learning engineering - just make sure to let them know so they can take care of the problem and get reimbursed for expenses from the class.

Excused absences due to COVID and other

If a student misses a lecture, lab or presentation due to COVID, Prof. Culpepper will work with them to create a plan to make up the work. If a student misses a quiz, they will be scheduled for a make-up after they return, with suitable time to prepare. Students that test positive for COVID may ask for additional time to complete assignments. This will be worked out between the student and Prof. Culpepper

Your physical and mental well-being

An MIT education is analogous to training for the Olympics. No athlete believes that being trained as an amateur will help them win a medal. This course is training you to become an "elite" engineer, and sometimes that means making you work in ways that will stretch you... ways that don't seem obvious as to how they will prepare you to do engineering work that you have not done before. This is a rigorous course in which you'll be expected to demonstrate that you've mastered the material and are capable of operating on your own to realize designs that meet requirements. With that said, your physical and mental well-being are of utmost importance. Just as an athlete can over-train, students can be overwhelmed, burn-out and be stressed in ways that are not helpful. There is no shame in admitting this if it happens to you. If so, know that Prof. Culpepper is very open to discussing your situation and working with you to make necessary and reasonable adjustments.